ARTIFICIAL INTELLIGENCE
Sure, it may doom us all via any number of sci-fi premises (nuclear annihilation, strategic species eradication, the rise of the robots) but artificial intelligence also might be our best bet computing ourselves out of the grave state we find ourselves in.
Microsoft’s AI for Earth program is one effort underway to harness the potential of AI for the good of the planet. The program has given more than 200 research grants to teams applying AI technologies to planetary health in one of four areas: biodiversity, climate, water, and agriculture. Primitive AI and machine learning algorithms are currently analyzing icy surfaces to measure changes over time, helping researchers plant new forests with precise layouts to maximize carbon sequestration, and enabling warning systems to help stem destructive algae blooms.
AI is having an impact on agricultural practices and will soon transform how farming is done in industrialized nations, reducing our reliance on pesticides and drastically lowering water consumption. AI will make autonomous vehicles more navigate more efficiently, lowering air pollution. AI is being deployed by material scientists to develop biodegradable replacements to plastics and develop strategies to clean our oceans, which receive some eight million metric tons of plastics annually.
2. NUCLEAR FUSION
Our sun is powered by the fusion of hydrogen nuclei, forming helium. For decades, scientists have been working on harnessing the same process to create sustainable terrestrial power. The effort is extremely compelling from an ecological standpoint because it represents a zero-carbon emissions form of energy. Unlike nuclear fission, the process that powers current nuclear plants, fusion does not result in the production of long-lived radioactive nuclear waste.
The problem is heat. To generate net positive energy when two particles fuse, the reaction has to take place at millions of degrees celsius, and that means whatever vessel you’re using to do the fusing will, well, melt. The answer is to suspend the reaction in a floating plasma so the extreme heat doesn’t touch the chamber, a process researchers believe can be achieved using high-powered magnets. The typical timeline offered for fusion power is 30 years, but a team at MIT working with a new class of magnets believes it can get fusion power into the grid in just 15 years, which would be a huge boon in the fight to slow the planet’s warming trend.